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Abstract-We solve the problem of minimizing the midspan transverse deflection of a simply supported
elastic beam-column of given mass, i.e. of an elastic bar acted upon simultaneously by an axial compression
and a transverse concentrated load, Solutions are presented for bars whose cross section is of sandwich or
solid construction. It is shown that optimization leads to a substantial decrease in the transverse deflection.
Simple formulas are suggested relating the minimum midspan transverse deflection to the applied axial
compression and transverse concentrated load. Alternatively, these formulas could be used to calculate the
maximum allowable axial compression (transverse load) for prescribed midspan deflection and transverse
load (axial compression). Finally, simple approximate analytical expressions are given for the optimal
design.

INTRODUCTION
Optimal design of structural members (ties, beams, columns, plates, etc.) that perform a given
function with the least amount of material has received considerable attention over the years
(see, e.g. the review papers [1,2]). Thus, e.g. the member may be required to act as a beam for a part
optimal design of structural members that have to perform several functions at different times
during their design life [3-8]. Thus, e.g. the member may be required to act as a beam for a part
of its design life and as a column for the rest, but not both at any given time.

On the other hand, it is not an uncommon situation is structural design when a member is
acted upon simultaneously by an axial compression and a transverse load. Such members are
usually called beam-columns. The aim of the present paper is to design the beam-columns in
such a way as to minimize the resulting maximum deflection. Specifically, we solve the problem
of a simply supported elastic beam-column of given mass (volume) under the simultaneous
action of an axial compression and a transverse concentrated load. With little modification, this
solution is also valid for a cantilevered beam-column.

Solutions are presented for beam-columns whose cross section is of sandwich or solid
construction. It is shown that optimization leads to a very substantial decrease in the transverse
deflection. Moreover, simple formulas are suggested relating the minimum midspan deflection
to the applied axial compression and transverse concentrated load. Alternatively, these for
mulas could be used to calculate the maximum allowable axial compression, if the maximum
midspan deflection and the transverse load are prescribed. Simple analytical expressions are
given for the optimal design.

I. PROBLEM STATEMENT AND OPTIMALITY CONDITION

The following optimization problem is posed. It is required to minimize the maximum
deflection y*(I/2) at the midspan of a simply supported elastic beam-column under the
simultaneous action of an axial compressive force p* and a midspan transverse concentrated
force 2Q*. The beam-column has to achieve this goal by a suitable distribution of the available
material volume, V, along its length, l.

Mathematically, the transverse deflection of the beam-column must satisfy the following
differential equation and boundary conditions written in a non-dimensional form

0,,;;; x";;; 1/2, y(O) = yx(1/2) =0 (1)

where y = y*/l and subscript x denotes differentiation with respect to the dimensionless linear
coordinate. Dimensionless axial compression P and one half the midspan concentrated force,
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Q, are defined by P = P*/2+n/Ecvn and Q = Q*/2+n/Ecvn, E being the Young's modulus of the
material. It is assumed that the deflection function is symmetric about the midspan, as are the
second moment of area, I, and the cross-sectional area, A. The latter two are assumed to be
related through I = cA n, where c and n are constants defined by the cross-sectional shape.
Thus, n = 1 represents a cross section of sandwich construction and n = 2 and 3- solid con
struction. Finally, the dimensionless area of cross section a(x) is defined by a(x) = AI/V.

In dimensionless variables the condition of given material volume (isoperimetric condition)
takes the following form

rt/2

210 a(x) dx = 1. (2)

The optimization problem under consideration consists in determining the variation of a(x)
along the length of the beam-column that satisfies the differential eqn (l) and isoperimetric
condition (2) and minimizes its maximum transverse deflection (at midspan)

111
/
2

P11
/2y(1/2) = Q 0 any;'" dx - Q 0 y/ dx ~min. (3)

It is easily shown that the solution of the optimization problem posed above will also be the
solution of the following optimization problem. Given the isoperimetric condition (2), the
allowable midspan deflection y(1/2) = Yo under a transverse concentrated force 2Q, determine
the variation of a(x) that maximizes the permissible axial compression

1
1/2

any;'" dx - Qyo
P _ 0- ="OC"-1::-rl/."..2----~ max.

y/dx
o

(4)

The necessary optimality condition for the above-stated optimization problem is obtained by
setting to zero the first variation of an auxiliary functional that includes the isoperimetric
condition (2) through a Lagrange mUltiplier. For both statements of the problem, the necessary
optimality condition is a special case of the well-known general condition [7]

(5)

where the unknown constant II is specified by the isoperimetric condition (2).

2. METHOD OF SOLUTION

In view of the boundary condition at x = 0 and the fact that the bending moment (any....:>
vanishes at the simply supported ends of the beam column, it is clear that a(O) = O. Hence it
follows from the optimality condition (5) that Yxx could suffer a singularity at x = O. To
investigate such a possibility, let y = B1x +B2xm near x = 0, where m is the lowest non-integer
power. Substituting for y, a and Yxx in the differential eqn (1), it can be shown that
m =(n +3)/(n + 1), whence it follows that Yxx varies as xCI-n)/Cl+n) near x =O. In other words, Yxx
is singular at x =0 for n > 1. In view of the non-singular behaviour of Yxx near x =0 and the
disappearance of a from the optimality condition (5), the special case when the area of cross
section and the stiffness are linearly related (n = 1) will be separately treated.

2.1 Sandwich cross section (n = 1)

The special problem of sandwich cross section is easily solved in a closed form. In this case
the area function a(x) disappears from the optimality condition (5), whence by double
integration and the application of boundary conditions, we get

(6)
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Substituting (6) and its derivatives into the differential eqn (1) and invoking the isoperimetric
condition (2), we get the following solution

( )
_ &(1- x) (12- P)x

aX- 2 + 3 '

3 Q
Ymin(1/2) = 8(12- P)"

o~x~ 1/2 (7)

(8)

It is worth mentioning that the two terms in the expression for a(x) are the column and
beam contributions, respectively, although Q does not explicitly appear in this expression.
Thus, when P = 0, the problem reduces to that of minimizing Y (1/2) under a concentrated
midspan force 2Q. In this case, the solution is known [6, 9] and coincides with that given by
(7H8). On the other hand, when Q = 0, the problem reduces to that of maximizing the Euler
buckling load of a column subject to the isoperimetric condition (2). The solution of this
problem is also known[6, 10] and is Pmax = 12. Note that in this eigenvalue problem y(1/2)
remains undetermined. This also follows from (8).

As mentioned in introduction, the solution (8) can also be interpreted in the following way.
Given a permissible midspan deflection y(1/2) =Yo under a concentrated force 2Q, it specifies
the maximum axial compression that can be applied to the beam-column without exceeding Yo

Pmax = 12-0.375 Qlyo. (9)

The effectiveness of the optimal design will be judged against a prismatic beam-column.
However, before making this comparison we present an iterative scheme for the solution of the
problem under consideration, when n = 2 or 3.

2.2 Solid cross section (n = 2 or 3)
Unlike the special case of n = 1, the optimization problem does not seem to have a closed

form solution. A simple iterative scheme, involving only regular functions, was used to arrive at
the solution. The iterative procedure involved the following sequence of steps:

(i) For given P and Q a regular function gi(X) =1 (0~ x ~ 1/2) in the first iteration (i = 1)
was assumed.

f
l/2

(ii) (y,Ji = - x 1I0 - 1l)/o+ll)gi(T/) dT/.

(iii) Yi=f Ytt(T/)dT/.

{ /
(1/2 J"+I

(iv) Vi = 0.5 10 (PYi +QX)21(Il+1) dx .

(v) ai = V/'(Il+I)(PYi +QX)2/(Il+1).
(vi) gi(X) = 1/{v{"(Il+I)(PyiX +Q)(I1-1)/(I1+1)}.

Note gi(O) # O.
(vii) Repeat steps (iiHvi), if IVi+1- vii> lO-s.

Instead of presenting the customary plot of the variation in a(x) for various values of P and
n, we present below approximate analytical expressions for a(x) for both n =2 and n =3.
These analytical expressions give results that differ from the "exact" numerical results by no
more than 1.5%.

The choice of the analytical expression for a(x) when n "" 2 or 3 was dictated by the form of
the corresponding expression for n "" 1 (7) and the following known or observed properties

(i) a(O) =O.
(ii) a(x) varies as x2/(Il+1) in the vicinity of x = O.
(iii) a(x) = (n +3/n +1)(2x)21(Il+1), when P = 0 (see, e.g. [9]).
(iv) a(x) is not explicitly dependent on Q, but depends only on P.
Bearing the above considerations in mind, the following approximate analytical expression
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for a(x) was assumed
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( )
_ px2/

(n+l)(1_ AxA
) +(Popt - P) 2/(n+l).

ax- B eX, 0,,;;; x";;; 1/2. (10)

Here Popt refers to the Euler buckling load of the optimally designed column. It takes the values
12.00, 13.16 and 13.88 for n = 1, 2 and 3, respectively [6, 8]. The constant C is immediately
found from the known solution for the optimal beam, because the second term in the
expression for a~) is the beam contribution, i.e. when P = O. In fact, it is easily shown that C
takes the values 3.0000, 4.9741 and 6.5432 for n = 1, 2 and 3, respectively. The remaining two
unknown coefficients A and B and the exponent A were determined from the following
conditions resulting either from the problem itself or from an examination of the numerical
solutions for n = 2 and 3:

(i) a(xo) =Const. for all values of P ~ 0, where Xo takes the values 0.309 and 0.296 for n =2
and 3, respectively. This followed from an examination of the numerical solutions for n = 2 and
3. It is worth mentioning that a similar situation arises in the sandwich case. Indeed, it is easy to
deduce from expression (7), that Xo = 1/3.

0;) The isoperimetric condition (2).
(iii) a,,(1/2) = 0, when P = POPh where subscript x denotes differentiation with respect to

this dimensionless longitudinal coordinate. This condition expresses mathematically the fact
that the optimal column design is flat at midspan.

Conditions (i) and (iii) gave expressions relating the coefficients A and B to the exponent A.
Finally, condition (ii) led to a non-linear equation in A, whose solution was found by trial and
error.

The following simple analytical expressions for a(x) gave results that differed from the
"exact" numerical results by less than 1.5%:

Px2/3(1- 0.793x7/8
) (13.16 - P) 2/3 •.>...,;..:-,::-;:,...,..,.:-'- x n = 2,

3.55 - 4.9741 '

a(x) = (11)

Px I/2(1- ~ X
7/S

)
_----=-: 3-..:.... (13.88 - P) 1/2. - 3

5.02 6.5432 x , n - .

It is worth reemphasizing that the optimal design for n =2 and 3, like the design for n =1
(expression 7) is independent of Q. Likewise, numerical results showed that the minimum
midspan deflection is a linear function of Q.

The values of QIYmin (1/2) for various values of axial compression P are tabulated below.
For completeness of presentation the corresponding values for n = I are also included.

Table I.

Prismatic (1- Ymin/Yprism) . 100
Q!Ymin(l/2) for various n beam-column where applicable

p 2 3 Q/Yprism(l/2) 2 3

0 32.00 37.04 40.05 24.00 25.00 25.21 40.07
4 21.33 25.66 28.60 14.35 32.72 44.07 49.82
5 18.67 22.83 25.66 11.92 36.15 47.78 53.82
6 16.00 20.01 22.73 9.49 40.69 52.58 58.25
7 13.33 17.20 19.81 7.05 47.11 59.02 64.43
8 10.67 14.39 16.91 4.60 56.89 68.05 72.79
9 8.00 11.59 14.01 2.14 73.25 81.51 84.71

10 5.33 8.80 11.12
11 2.67 6.01 8.25
12 3.22 5.35
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In order to judge the effectiveness of the optimal designs the midspan deflection of the
optimal beam-column was compared with that of a prismatic beam-column of the same volume
and subjected to the same axial and transverse forces, as the optimal beam-column.

The cross-sectional area of such a prismatic beam-column is a(x) = 1, O:s;; x :s;; 1/2 for all n,
and its midspan deflection is given by [11]

0/2) = .Q (tan V(P)/2 - 1)
Y 2P V(P)/2 .

(2)

Clearly, the comparison is meaningful only when P is less than the Euler buckling load of
the prismatic column (P < 1T

2
). This is true for all n.

From the tabulated values it is clear that the optimal design leads to a very substantial
reduction in the transverse deflection in comparison with that of a prismatic beam-column.

As in the special case n = 1, the value of P for the optimal column is known to be 13.16 and
13.88, for n = 2 and 3, respectively [6, 8]. With this in mind, it was possible to deduce from the
numerical results (to within an accuracy of ±0.5%) the following explicit expressions for
YminO/2) as a function of prescribed P and Q

(3)

Again, an alternate interpretation of (13) is also valid: Given a permissible midspan
deflection Yo under a concentrated force 2Q, (3) specifies the maximum axial compression that
can be applied to the beam-column without exceeding Yo

P = 13.16 - 0.358 Q/yo; n = 2
max 13.88 - 0.347 Q/yo; n = 3. (4)

The solution of the optimization problem posed here has clearly demonstrated that opti
mization can lead not only to a substantial reduction in the transverse deflection, but also
provide a possible design in situations where a prismatic beam-column could not even be
contemplated. However, the limitations of the linear elastic theory used here should be borne in
mind in judging the results when YminO/2) is very large (Q/Ymin is small).

Finally, it should be pointed out that with minor reinterpretation of P and Q, the solution
presented here is also valid for a cantilevered beam-column.
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